
Elasticsearch Learning to Rank
Documentation

Pere Urbon, Ivan Kitanovski

Jul 21, 2020

Contents

1 Get started 3

2 Installing 5

3 Heeelp! 7

4 Contents 9
4.1 The Theory . 9

4.1.1 Ranking can be biased . 9
4.1.2 The FA*IR algorithm . 10
4.1.3 References . 11

4.2 The Plugin . 11
4.2.1 What the Fairsearch plugin does . 11
4.2.2 What the plugin does NOT . 11

4.3 How to use the fair-search plugin . 11
4.3.1 Assumptions and preconditions for this example . 12
4.3.2 How does a search looks like . 12
4.3.3 Details on parameters . 13

4.4 Advance usage . 14
4.4.1 Building M tables . 14

4.5 Contact . 16

5 Indices and tables 17

i

ii

Elasticsearch Learning to Rank Documentation

The Fairsearch plug-in for Elasticsearch is an implementation of the FA*IR algorithm. It enables you to apply a
positive action policy in which elements are re-ranked to ensure a fair representation of minorities or disadvantaged
people.

This plugin has been developed by Pere Urbón and, later, by Ivan Kitanovski in collaboration with researchers at TU
Berlin and Pompeu Fabra University, with support from a grant by the Data Transparency Lab.

Contents 1

https://arxiv.org/abs/1706.06368
http://datatransparencylab.org/dtl2017_program_fair/

Elasticsearch Learning to Rank Documentation

2 Contents

CHAPTER 1

Get started

• Check whether this plug-in is for you: The Theory, The Plugin

• Understand the fairness criterion applied: The Theory

• Use the plug-in to perform a re-ranking: How to use the fair-search plugin

• Advance usage, like build an M table: Advance usage

3

Elasticsearch Learning to Rank Documentation

4 Chapter 1. Get started

CHAPTER 2

Installing

Pre-built versions can be found here. Want a build for an ES version? Follow the instructions in the README for
building or create an issue. Once you’ve found a version compatible with your Elasticsearch, you’d run a command
such as:

./bin/elasticsearch-plugin install https://fair-search.github.io/fair-reranker/fairsearch-1.0-es6.1.
2-SNAPSHOT.zip

(It’s expected you’ll confirm some security exceptions, you can pass -b to elasticsearch-plugin to automatically install)

5

https://fair-search.github.io/
https://github.com/fair-search/fairsearch-elasticsearch-plugin#development
https://github.com/fair-search/fairsearch-elasticsearch-plugin#development
https://github.com/fair-search/fairsearch-elasticsearch-plugin/issues
https://fair-search.github.io/fair-reranker/fairsearch-1.0-es6.1.2-SNAPSHOT.zip
https://fair-search.github.io/fair-reranker/fairsearch-1.0-es6.1.2-SNAPSHOT.zip

Elasticsearch Learning to Rank Documentation

6 Chapter 2. Installing

CHAPTER 3

Heeelp!

• If you have questions or feedback, see Contact

7

Elasticsearch Learning to Rank Documentation

8 Chapter 3. Heeelp!

CHAPTER 4

Contents

4.1 The Theory

4.1.1 Ranking can be biased

Core concepts: ranking bias

Search engines today are used to rank many different types of items, including items that represent people. Job
recruiting search engines, marketplaces for consulting and other services, dating apps, etc. have at its core the idea of
ranking/ordering people from most relevant to less relevant, which often means from “best” to “worst”.

Traditional scoring methods such as TF-IDF or BM25 (the two most popular ones) can introduce a certain degree of
bias; the main motivation of this plugin is to provider methods to search without having this problem.

A computer system is biased [Friedman 1996] if:

It systematically and unfairly discriminate[s] against certain individuals or groups of individuals in favor
of others. A system discriminates unfairly if it denies an opportunity or a good or if it assigns an undesir-
able outcome to an individual or a group of individuals on grounds that are unreasonable or inappropriate.

In algorithmic bias, an important concept is that of a protected group, which is a category of individuals protected by
law, voluntary commitments, or other reasons. Search results are considered unfair if members of a protected group
are systematically ranked lower than those of a non-protected group.

Examples where a fair search would be required are for instance, the US Equal Employment Opportunity Commission,
which sets a goal of 12% of workers with disabilities in federal agencies in the US, while in Spain, a minimum of 40%
of political candidates in voting districts exceeding a certain size must be women.

Real-world example: Job Search

Consider the three rankings in the table below, corresponding to searches for an “economist,” “market research ana-
lyst,” and “copywriter” in a job search engine, i.e., an online platform for jobs that is used by recruiters and headhunters
to find suitable candidates.

9

Elasticsearch Learning to Rank Documentation

Positions 1, 2, . . . , 10 are the top-10 ranking positions. A letter m indicates the candidate is a man, while f indicates
the candidate is a woman.

Query 1 2 3 4 5 6 7 8 9 R10 Men:Women (top-
10)

Men:Women (top-
40)

Econ. f m m m m m m m m m 90%:10% 73%:27%
Analyst f m f f f f f m f f 20%:80% 43%:57%
Copywr. m m m m m m f m m m 90%:10% 73%:27%

While analyzing the extent to which candidates of both genders are represented as we go down these lists, we can
observe that the proportions keep changing (compare the top-10 against the the top-40).

As a consequence, recruiters examining these lists will see different proportions depending on the point at which they
decide to stop. This can cause under represented groups have not a fair outcome, so limiting the visibility.

4.1.2 The FA*IR algorithm

What is the fairness criterion applied by FA*IR?

A prefix of a list are the first elements of the list; for instance, the list (A, B, C) has prefixes (A), (A, B), and (A, B, C).

The fairness criterion in FA*IR [Zehlike et al. 2017] requires that the number of protected elements in every prefix
of the list corresponds to the number of protected elements we would expect if they where picked at random using
Bernoulli trials (independent “coin tosses”) with success probability p.

This correspondence is not exact, and there is a parameter 𝛼 corresponding to the accepted probability of a Type I
error, which means rejecting a fair ranking in this test. A typical value of 𝛼 could be 0.1, or 10%.

Given p, 𝛼, and k, which is the total length of the list to be returned, an M-table is computed. This M-table indicates
what is the minimum number of protected elements at every prefix.

Example

This example illustrates how the re-ranker works, but we will be omitting a correction on 𝛼 that will be explained next.

Suppose p=0.5, this means that we would like a list in which the protected candidates are at least 50% of every prefix.
Suppose 𝛼=0.1, meaning we accept a 10% of Type I error.

The M-table in this case is:

Position 1 2 3 4 5 6 7 8 9 10

M 0 0 0 1 1 1 2 2 3 3

This means that, among the top 3 elements, even if there is no protected item, we would still consider the list to be
fair, because if you toss a fair coin (p=0.5) 3 times, the chance of getting “heads” 3 times is above 10% (remember
𝛼=0.1). However, among the top 4 items, at least one of them has to be protected, because if you toss a fair coin, the
chance of getting heads 4 times is below 10%, hence, with this 𝛼 it is not believable that the coin was fair in the first
place.

The rest of the M table is easy to interpret; for instance: among the top-5 elements there has to be at least 1 protected,
among the top-7 there must be 2 at least, and among the top-9 there must be 3 at least.

10 Chapter 4. Contents

Elasticsearch Learning to Rank Documentation

Corrections for multiple hypotheses testing

The FA*IR plug-in does not use directly the parameter 𝛼, but computes a corrected 𝛼, which is in general smaller. For
instance, for p=0.5, 𝛼=0.1, k=100, the corrected 𝛼=0.0207.

The corrected 𝛼 accounts for the fact that, in a list of size k, there will be k tests performed, one for every prefix (for
instance, 100). Hence, the probability of failing in at least one prefix is larger than 𝛼 (because there are 100 attempts
being made). The correction mechanism is explained in the FA*IR paper [Zehlike et al. 2017].

4.1.3 References

[Friedman 1996] Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. ACM Transactions on Informa-
tion Systems (TOIS), 14(3), 330-347.

[Zehlike et al. 2017] Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., and Baeza-Yates, R. (2017,
November). FA*IR: A fair top-k ranking algorithm. Proc. CIKM 2017 (pp. 1569-1578). ACM Press.

4.2 The Plugin

4.2.1 What the Fairsearch plugin does

People search engines, as a main example of this plugin application, are not aware of the biases the traditional algo-
rithms for search (aka TF/IDF or BM25) might be introducing in their search results. This will reduce the visibility of
already disadvantaged groups corresponding to a legally protected category such as people with disabilities, racial or
ethnic minorities, or an under-represented gender in a specific industry).

This plugin uses an efficient algorithm for producing a fair ranking given a protected attribute, i.e., a ranking in which
the representation of the minority group does not fall below a minimum proportion p at any point in the ranking, while
the utility of the ranking is maintained as high as possible.

This method can be used within an anti-discrimination framework such as positive actions. This is certainly, not
the only way of achieving fairness, but this plugin provide an algorithm grounded in statistical tests that enables the
implementation of a positive action policy in the context of search.

4.2.2 What the plugin does NOT

This plugin uses a fairness criterion that requires a couple of input parameters, but it does impose specific parameters
for that fairness (e.g., the proportion p). Those must be set according to the context of your application.

4.3 How to use the fair-search plugin

Now it is time to finally perform a fair re-scoring.

The usual flow for the fairsearch plug-in is this one:

• a user executes a query in the search engine, and during this process,

• indicates s/he wants to apply the fairsearch plug-in.

To achive this we are going to use a functionality provided by Elasticsearch named re-scoring.

4.2. The Plugin 11

https://vsdesign.org/publications/pdf/64_friedman.pdf
https://arxiv.org/abs/1706.06368

Elasticsearch Learning to Rank Documentation

4.3.1 Assumptions and preconditions for this example

Lets suppose we have already in our search engine this set of documents:

Doc1 { body: "hello hello hello hello hello hello hello hello hello hello", gender: "m
→˓" }
Doc3 { body: "hello hello hello hello hello hello hello hello hello bye", gender: "m"
→˓}
Doc5 { body: "hello hello hello hello hello hello hello hello bye bye", gender: "m" }
Doc7 { body: "hello hello hello hello hello hello hello bye bye bye", gender: "m" }
Doc9 { body: "hello hello hello hello hello hello bye bye bye bye", gender: "m" }
Doc2 { body: "hello hello hello hello hello bye bye bye bye bye", gender: "f" }
Doc4 { body: "hello hello hello hello bye bye bye bye bye bye", gender: "f" }
Doc6 { body: "hello hello hello bye bye bye bye bye bye bye", gender: "f" }
Doc8 { body: "hello hello bye bye bye bye bye bye bye bye", gender: "f" }
Doc10 { body: "hello bye bye bye bye bye bye bye bye bye", gender: "f" }

In this example, women will be our protected category. As we see in the “body” of the documents above, the word
“hello” occurs more in the ones having gender=m (male) than in the ones having gender=f (female).

4.3.2 How does a search looks like

Lets first imagine we execute a normal search for “hello”, one without using the fairsearch plug-in. The results would
look like this:

GET test/_search
{

"query": {
"match": {

"body": "hello"
}

}
}

This request will return all documents that match the word hello, sorted by their relevance scoring. For this particular
dataset we would get these results:

Doc1, Doc3, Doc5, Doc7, Doc9, Doc2, Doc4, Doc6, Doc8, Doc10

and if we take a closer look, these will be:

m, m, m, m, m, f, f, f, f, f

with all men as first top results, however as we could see in the The Theory section, there are many situations where
we might aim for a fair result. To achieve this we will use the plug-in.

A request with the re-score function will look like this:

GET test/_search
{

"query": {
"match": {

"body": "hello"
}

},
"rescore": {

"fair_rescorer": {
"protected_key": "gender",

(continues on next page)

12 Chapter 4. Contents

Elasticsearch Learning to Rank Documentation

(continued from previous page)

"protected_value": "f",
"significance_level": 0.1,
"min_proportion_protected": 0.6

}
}

}

this request is actually doing an Elasticsearch match query (it also could do any other type of query, for example a
bool or a multi match), then after the results are calculated (in every shard) it applies the fair topK algorithm.

This request will give you a response where the target number of protected elements will be scored in relevant places,
that for our example will be:

Doc1, Doc3, Doc2, Doc5, Doc4, Doc7, Doc9, Doc6, Doc8, Doc10

or, in terms of gender:

m, m, f, m, f, m, m, f, f, f

with a much fairer distribution of elements of the protected class (i.e., some women appear in the top positions).

4.3.3 Details on parameters

As we saw in the The Theory, for the fair query to work, we would need an mtable against which the re-scoring will
be executed. To make the use of the plug-in easier, the re-score function does that in the background. So, the previous
re-score call will create an mtable with the following parameters:

• k=10, as 10 is the default documents that are returned by Elasticsearch

• 𝛼=0.1, as that is the significance level specified in the query

• p=0.6, as that is the minimum proportion of protected elements specified in the top results

Elasticsearch size parameters

Elasticsearch supports the following size parameters:

• size, which is the total number of documents returned by ElasticSearch (defaults to 10)

• window_size, which is the number of documents to be re-ranked by the re-score function and returned to the
user (defaults to 10).

For example, if you make a query like this:

GET test/_search
{

"size": 50,
"query": {

"match": {
"body": "hello"

}
},
"rescore": {

"window_size": 10,
"fair_rescorer": {

"protected_key": "gender",
"protected_value": "f",
"significance_level": 0.1,

(continues on next page)

4.3. How to use the fair-search plugin 13

Elasticsearch Learning to Rank Documentation

(continued from previous page)

"min_proportion_protected": 0.6
}

}
}

This will try to find initial 50 documents that match the query and, then, re-rank and return only the top 10. So,
the plug-in will choose window_size as the k parameter or, if smaller, the actual numbers of documents initially
returned.

Ensuring there are protected elements in the topK results

A recommended way of using the plug-in is to specify a higher number for size, so that more elements can be
included in the initial list for more fair re-ranking. Then, after the re-scoring phase, only window_size number of
documents will be returned.

4.4 Advance usage

4.4.1 Building M tables

The M tables are a core component of this plugin. They indicate at position M[i] the minimum number of protected
elements that must be present among the top i elements to consider the ranking was fair.

In the plugin we operationalize this process by creating them inside elasticsearch as documents in their own internal
store, otherwise the process of calculating them on every request would it be very costly.

Create a new M table

To create a new M table you can issue the next command:

POST _fs/_mtable/{proportion}/{alpha}/{k}

where the parameters are:

• proportion: The proportion of protected elements.

• alpha: The significance parameter (𝛼) corresponding to the probability of rejecting a fair ranking.

• k: The expected size of returned documents in the search.

for example:

POST /_fs/_mtable/0.5/0.1/5

{
"_index": ".fs_store",
"_type": "store",
"_id": "name(0.5,0.1,5)",
"_version": 1,
"result": "created",
"forced_refresh": true,
"_shards": {

"total": 2,
"successful": 1,
"failed": 0

(continues on next page)

14 Chapter 4. Contents

Elasticsearch Learning to Rank Documentation

(continued from previous page)

},
"_seq_no": 0,
"_primary_term": 1

}

this will store a document in elasticsearch that will look like:

{
"_index": ".fs_store",
"_type": "store",
"_id": "name(0.5,0.1,5)",
"_score": 1,
"_source": {
"type": "mtable",
"proportion": 0.5,
"alpha": 0.1,
"k": 5,
"mtable": [

0,
0,
0,
0,
1,
1

]
}

}

List all stored M tables

To list all stored M tables you can use this command:

GET _fs/_mtable

this will give you an answer like:

{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0

},
"hits": {

"total": 3,
"max_score": 1,
"hits": [
{

"_index": ".fs_store",
"_type": "store",
"_id": "name(0.5,0.1,5)",
"_score": 1,
"_source": {

"type": "mtable",

(continues on next page)

4.4. Advance usage 15

Elasticsearch Learning to Rank Documentation

(continued from previous page)

"proportion": 0.5,
"alpha": 0.1,
"k": 5,
"mtable": [
0,
0,
0,
0,
1,
1
]

}
},

....
]
}

}

Delete stored M tables

Currently there is no functionality offered to delete an specific mtable, you should probably also never do that yourself.
However if you want to delete documents, use the standard document api from elastic and refer to the specific table
document id.

4.5 Contact

The plugin and guide was built by the search and data consultant Pere Urbon in partnership with researchers from
Technische Universität Berlin (Meike Zehlike and Tom Sühr) and Universitat Pompeu Fabra (Carlos Castillo).

This development was supported by a grant from the Data Transparency Lab.

The FA*IR algorithm was introduced in: Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., and Baeza-
Yates, R. (2017, November). FA*IR: A fair top-k ranking algorithm. Proc. CIKM 2017 (pp. 1569-1578). ACM
Press.

If you have any questions or feedback, please contact Pere Urbon or create an issue.

16 Chapter 4. Contents

http://purbon.com
https://www.cit.tu-berlin.de/menue/personen/zehlike_meike/
https://www.linkedin.com/in/tom-s%C3%BChr-436999147/
http://chato.cl/research/
http://datatransparencylab.org/
https://arxiv.org/abs/1706.06368
mailto:name.surname@acm.org
https://github.com/fair-search/fairsearch-elasticsearch-plugin/issues

CHAPTER 5

Indices and tables

• genindex

• search

17

	Get started
	Installing
	Heeelp!
	Contents
	The Theory
	Ranking can be biased
	The FA*IR algorithm
	References

	The Plugin
	What the Fairsearch plugin does
	What the plugin does NOT

	How to use the fair-search plugin
	Assumptions and preconditions for this example
	How does a search looks like
	Details on parameters

	Advance usage
	Building M tables

	Contact

	Indices and tables

